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ABSTRACT
Intra-subject deformable registration applications, such as

longitudinal analysis and multi-modal imaging, use a high

degree freedom deformation to accurately align soft tissue.

However, smoothness constraints applied to the deformation

and insufficient degrees of freedom in the deformation may

distort the more rigid tissue types such as bone. In this paper,

we present a technique that aligns rigid structures using rigid

constraints while aligning soft tissue with a high degree of

freedom deformation.

Index Terms— Deformable image registration, optical

flow, anatomy-specific constraints, volume preservation.

1. INTRODUCTION

Intra-subject image registration is a powerful tool for esti-

mating coordinate frame mappings in longitudinal sequences,

time varying (4D) acquisitions, interventional imaging, and

multi-modal imaging. The coordinate frame mappings al-

low the clinician to fuse information coming from differ-

ing sources, imaging anatomy, function or select pathology.

When imaging the thorax or abdomen, deformable registra-

tion is needed to accurately estimate the coordinate frame

mappings between soft tissue types in order to correct for

shape change due to respiration. However, the abdomen and

thorax contain a variety of tissue types with widely varying

rigidity. Individual structures, such as bone, predominantly

move rigidly with changes in patient position and posture

while surrounding soft tissue deforms non-rigidly. While

deformable registration is capable of modeling rigid motion,

most deformable methods use either too few degrees of free-

dom in modeling the coordinate frame mapping, making it

difficult to accurately model proximal rigid and nonrigid mo-

tion, or use too many degrees of freedom in modeling the

coordinate frame mapping, resulting in an over-fitting of sen-

sor variations on rigid structures and unrealistic local minima

mappings.

A variety of approaches have been published to address

both rigid and nonrigid motion leveraging image registration.

Little et al. [1] present a thin-plate spline method to define

nonrigid coordinate frame transformations where portions of

the transform are constrained to be linear (affine). Staring et
al. [2] adaptively filter a deformation field to apply rigidity

constraints during regularization. Ruan et al. [3] regularize a

dense deformation field such that the Jacobian in rigid regions

is nearly orthogonal.

In a framework similar to some of the techniques referred

above, we propose modelling a coordinate frame mapping

using a dense deformation field and incorporating anatomi-

cal information. We explicitly enforce linear and rigid body

constraints over large image areas as part of the deformation

field regularization. As the optimization process iterates, re-

gions under linear and rigid body constraints always move

linearly or rigidly while unconstrained regions move under a

free-form deformation. We demonstrate the approach using

a modified Demons style algorithm, although the basic ap-

proach could be applied to many of the above techniques.

2. DEMONS

The image registration problem of two images is to estimate

the transformation T that maps a position pf in a fixed image

If to the corresponding position pm = T (pf ) in the mov-

ing image Im. Thirion [4] introduced the Demons registra-

tion algorithm to align images on the basis of optical flow.

In the Demons algorithm, an iterative solution for T is given

by Ti+1 = ∂Ti ◦ Ti, where ∂Ti is an incremental transfor-

mation based on a set of positions pf1 , · · · , pfN
and a set of

incremental displacements �f(pf1), · · · , �f(pfN
),

∂Ti = F
(
pf1 , · · · , pfN

, �f(pf1), · · · , �f(pfN
)
)

, (1)

�f(pf ) =
(Im(Ti(pf ))− If (pf ))∇If (pf )

‖∇If (pf )‖2 + (Im(Ti(pf ))− If (pf ))2
(2)

The function F () in equation 1 allows a diverse set of in-

cremental transformations ∂Ti to be modelled, ranging from

free-form deformations to parameterized transformations. In

the former, a dense set of incremental displacement vectors is

estimated. This is how the Demons algorithm is implemented

in the Insight Segmentation and Registration Toolkit [5]. In

the latter, parameterized transforms, such as affine or B-spline

transformations, are estimated from the positions and incre-

mental displacement vectors. This latter approach makes

the Demons algorithm similar to parameter estimation ap-

proaches to image registration. The function F () can also be

used to regularize the displacement field.
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In this paper, we explore using transformations Ti and in-

cremental transformations ∂Ti whose representation and de-

grees of freedom vary spatially. Here, some positions in If

will be governed by rigid body parameterized transformations

while other positions in If will be governed by free-form de-

formations. This approach can be applied to other algorithms

with a similar formulation (e.g. the Level-set motion registra-

tion by Vemuri et al. [6])

3. SPATIAL CONSTRAINTS ON DEFORMATION
DEGREES OF FREEDOM

Our approach is to delineate regions, Ωj , in the fixed image If

and assign a transformation model Θj to each region. Region

delineations can be derived from an atlas, can be the result

of automated and semi-automated segmentation algorithms

applied to individual structures, or defined manually. When

registering CT imagery without injected contrast, large rigid

bone structures can be easily identified using simple thresh-

olding techniques followed by connected component tech-

niques to isolate individual structures.

For each region, we prescribe a transformation model

to govern its motion. Currently, we provide rigid, linear

(affine), and free-form transformations. Other parameterized

and spline based transformations are possible. The trans-

formation model for each region is used to regularize the

deformation field in a Demons style algorithm. Note that this

approach can be applied to any formulation similar to the

Demons algorithm. The registration algorithm is as follows:

1. Initialize deformation field, T0 ← �0

2. Estimate incremental displacements,

�f(pf ) =
(Im(Ti(pf ))− If (pf ))∇If (pf )

‖∇If (pf )‖2 + (Im(Ti(pf ))− If (pf ))2
(3)

3. Composite the incremental displacements into the cur-

rent deformation field, Ti+1 = Ti + ∂Ti

4. Regularize each region Ti+1,Ωj based on its transfor-

mation model Θj

(a) Θj ∈ free-form deformation:

Ti+1,Ωj ← Ti+1,Ωj ∗N(0, Σ) (4)

(b) Θj ∈ linear, Θj ∈ rigid:

Θ∗j = argminΘj
‖F (Ti+1,Ωj

; Θj)− Ti+1,Ωj
‖2 (5)

Ti+1,Ωj ← F
(
Ti+1,Ωj ; Θ

∗
j

)
, (6)

where Ti+1,Ωj
is the portion of the deformation field

under the region Ωj .

5. Repeat with step 2

In the regularization step 4, we use the standard gaussian

smoothing approach to yield a smoothly varying deformation

field for the regions Ωj whose transformation models Θj are

free-form transformations. For other transformation types, we

estimate the parameters of the transformation Θj that best de-

scribes (under an appropriate metric) region Ωj’s deformation

field Ti,Ωj . Then, we project Ti,Ωj onto the space spanned by

the transformation Θj . We then continue with Demons iter-

ations until convergence. Note, that at each iteration, the de-

formation field is explicitly constrained to the feasible region

prescribed by the region delineations Ωj and the prescribed

transformation types Θj . Thus, regions that are defined to

move rigidly will move rigidly during the entire optimization

process, yielding valid deformations at each iteration. This is

in contrast to other techniques, where the rigidity constraints

may only be fully satisfied at the optimum. The transforma-

tion estimation and projection operations are described in the

following sections.

4. ESTIMATING LINEAR TRANSFORMATIONS

A position pm in Im is related to a position pf in If through

a transformation as well as through a displacement vector:

pm = T (pf ), pm = pf + �f(pf ). Combining these equa-

tions, each displacement vector can be written as a function

of the transformation �f(pf ) = T (pf ) − pf . If T is a linear

transformation, �f(pf ) can be written in matrix form �f(pf ) =

B

[
pf

1

]
. Given a set of measurement locations pfi and a

set of displacement vectors �f(pfi
), we construct the linear

multivariate model

Y = XBT + U (7)

where X and Y are matrices whose rows are composed of the

positions pf1 , · · · , pfN
and the displacement vectors �f(pf1),

· · · , �f(pfN
)

X =

⎡
⎢⎣

pT
f1

1
...

...

pT
fN

1

⎤
⎥⎦ Y =

⎡
⎢⎣

�f(pf1)
T

...
�f(pfN

)T

⎤
⎥⎦ (8)

with the matrix U modelling the noise. When the noise is

multivariate normal, the maximum likelihood estimator for B
is given by [7]

BT =
(
XT X

)−1
XT Y. (9)

To constrain the original set of displacement vectors to the

space spanned by the estimated linear transformation, the vec-

tors �f(pfi
) are replaced with

�̂f(pfi) = B

[
pfi

1

]
. (10)
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We use equation 9 as the implementation of equation 5, es-

timating the parameters Θj of the linear transformation for a

region Ωj prescribed to move linearly. We use equation 10

as the implementation of equation 6, projecting the displace-

ment vectors Ti,Ωj
onto this space, thereby enforcing the lin-

ear constraints.

Equation 9 provides the maximum likelihood estimate

of the linear model, assuming all measurements are trusted

equally. If the displacement vectors have varying certainty, a

weighted estimator can also be used, where equations 7 and

9 become

WY = WXBT + WU, (11)

BT =
(
XT WT WX

)−1
XT WT WY. (12)

Equation 12 provides a mechanism to employ robust loss

functions and M-estimators [8] to estimate the parameters of

the linear model. Using M-estimators will increase the ro-

bustness of the linear model estimated from the displacement

vectors.

5. ESTIMATING RIGID TRANSFORMATIONS

The linear model B estimated in equation 9 maps positions

in If to displacement vectors that model an underlying affine

motion of the positions. To model rigid body motion, addi-

tional constraints are needed on the parameters of the transfor-

mation. We modify the problem formulation from the linear

case such that the goal is to estimate the rigid body transform

(R, t) that maps positions in If to positions in Im under rigid

body motion. Here, equation 5 becomes

R∗, t∗ = argminR,t‖Y −XR− t‖2 (13)

subject to : RT R = I (14)

where the matrix X in this case has dropped the final col-

umn of 1’s and the matrix Y contains positions pfi
+ �f(pfi

)
in Im instead of the displacement vectors. A region of the

deformation field Ωj constrained by rigid motion is reg-

ularized by solving equation 13 under the constraints 14

and projecting the vectors �f(pfi
) in Ωj with �̂f(pfi

) =
Rpfi

+ t − pfi
. The constrained optimization problem

in equations 13 and 14 operates in the Special Euclidean

Group, SE(3). Horn [9] presents a closed form solution

which changes the parametrization of the problem to use

quaternions. The change of parametrization converts the op-

timization problem in equations 13 and 14 to a well known

eigenvector problem. Several extensions to Horn’s basic

method have been proposed as the solution step iterated in

Iterative Closest Point (ICP) registration [10, 11]. Many

of these extensions can also be applied here, ignoring the

iteration of ICP. In particular, Fitzgibbon [10] presents a

formulation whereby robust loss functions can be incorpo-

rated into the metric, thereby increasing the robustness of the

estimated rigid model to the displacement vectors.

6. RESULTS

We have tested our algorithm on both 2D and 3D real im-

ages. We compare the Demons registration algorithm from

the Insight Segmentation and Registration Toolkit (ITK) with

a version of this algorithm modified to enforce linear and rigid

body constraints. A similar experiment was also performed

using the Level-set motion registration algorithm from ITK

for the 3D images.

Fig. 2 illustrates this technique applied to a 2D CT image

of the cervical region of the spine. The ground truth coordi-

nate transformation between the image sets is a translation of

3mm × 3mm × 3mm. The registration without constraints

fails to align the complete rib or vertebrae whereas the regis-

trations incorporating linear and rigid body constraints align

the data well (Fig. 2).

For the 3D case, we performed registrations on respira-

tory gated CT images that were obtained from 4 different pa-

tients. Each patient data comprised of 6 respiratory-gated vol-

umes that were then registered to a chosen reference gate. In

total, we tested each algorithm on 20 registrations (5 pairs×4
patients). For the 3D volumes, the visual overlays (Fig. 3)

show that the proposed approach minimizes unnatural warp-

ing of rigid structures while improving overlap with the refer-

ence image. To reinforce the visual assessments, we calculate

Dice’s Coefficient (DC) that measures the similarity between

the bone-masks obtained from the algorithms with that ob-

tained from the reference image. For binary masks A and B,

DC(A,B) = 2|A∩B|
|A|+|B| . We observe a consistent improvement

in the Dice’s coefficient by using our method. Fig. 1 shows

the results for a patient [5 registrations].

Fig. 1. DC between the bone-masks for patient #1: im-

provement in overlap using the proposed approach with both,

Demons and Level-set motion methods

7. CONCLUSIONS

Deformable registration techniques are capable of modeling

a wide range of nonrigid motion. However, when regions of

an image are known to move rigidly, these techniques may

not estimate true rigid motion. While deformable techniques

can model rigid body vector fields, intermediate results be-

fore convergence and local minima results may not reflect re-

alizable configurations. We have shown how a deformable

registration technique known for estimating high degree of
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(a) (b)

Fig. 2. (a) Comparison of the contour of the constrained re-

gion. (b) Comparison of mean square metric convergence.

Red: Demons, Blue: Linear constraints, Green: Rigid con-

straints [note: rigid and linear contours coincide in this case]

freedom deformations (Demons) can be constrained to incor-

porate rigid and linear motions embedded in free-form defor-

mations. We achieve this by applying custom regularizations

to each image region. The regularizations for linearly and

rigidly constrained regions estimate a low parameter model

of the motion from the current Demons vectors and use the

estimate to project the deformation field in that region to sat-

isfy the constraints. This allows constraints to be applied to

large image regions and ensures that the constraints are satis-

fied throughout the Demons iterations. As shown in the 3D
experiment, the approach can easily be extended to similar al-

gorithms like Level-set motion registration. The low parame-

ter models can be standard maximum likelihood estimates or

weighted estimates using robust loss functions. This approach

has also shown a benefit in the rate of convergence (Fig. 2(b)).
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